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Abstract

Combining the harmonic balance method (HBM) and a continuation method is a well-known technique to follow the
periodic solutions of dynamical systems when a control parameter is varied. However, since deriving the algebraic system
containing the Fourier coefficients can be a highly cumbersome procedure, the classical HBM is often limited to
polynomial (quadratic and cubic) nonlinearities and/or a few harmonics. Several variations on the classical HBM, such as
the incremental HBM or the alternating frequency/time-domain HBM, have been presented in the literature to overcome
this shortcoming. Here, we present an alternative approach that can be applied to a very large class of dynamical systems
(autonomous or forced) with smooth equations. The main idea is to systematically recast the dynamical system in
quadratic polynomial form before applying the HBM. Once the equations have been rendered quadratic, it becomes
obvious to derive the algebraic system and solve it by the so-called asymptotic numerical method (ANM) continuation
technique. Several classical examples are presented to illustrate the use of this numerical approach.
© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In the field of engineering, especially when dealing with nonlinear vibrations, it is often required to compute
the periodic solutions of a system of nonlinear differential equations [1,2]. In the following, we focus on
numerical methods to find periodic solutions. They are usually subdivided into two main groups: those relying
on the time-domain formulation and those relying on the frequency-domain formulation. The first group
consists of methods where a time integration algorithm, which is generally limited to a single period, is used to
transform the original differential system into a system of algebraic equations, which are then solved by
continuation. With these methods, the unknowns in the algebraic system are the values of the original
unknown variables at grid points along the periodic orbit. The classical shooting technique [3,4] and the
orthogonal collocation methods used in AUTO [5,7] belong to this group. The second group corresponds to
the so-called harmonic balance method (HBM) where the unknown variables are decomposed into truncated
Fourier series. In this case, the unknowns in the final algebraic system, which is obtained by balancing the
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harmonics featuring in the differential equations, are simply the Fourier coefficients of the original unknowns.
Methods of both kinds are widely used in many applications and research is still required to improve them. In
practical terms, the choice between the time-domain or the frequency-domain approach depends mainly on
whether the periodic solution can be decomposed with a few Fourier components. The method chosen to deal
with a given problem can therefore depend on the operating point.

In this paper, we focus on the HBM and some of its variations, which are briefly recalled here. Although the
name “harmonic balance (HB)” seems to have first appeared in 1936 [8], this method has been widely used
only since the sixties, and especially for electrical and mechanical engineering purposes. Forced vibrations
were first studied [9], and self-sustained oscillations a decade later [10]. The study by Nakhla and Vlach [11] is
often said to be a milestone in the modern formulation of HBM. The classical HBM is simple in its principle,
but it can be cumbersome or even impracticable, as stated by Peng et al. [12] when the system contains
complex nonlinearities and when a large number of harmonics is required, i.e., more than 5 or 10. The first
problem which arises is how to derive the algebraic system for the Fourier coefficients and the second problem
is how to solve this strongly nonlinear system efficiently. To overcome these shortcomings, many variations on
the basic HBM have been proposed in the literature. Here, we will simply give an overall picture of
incremental harmonic balance (IHB) and alternating frequency/time-domain harmonic balance (AFT)
method. With the THB method [13], the incremental-iterative method used for the continuation is
closely combined with the harmonic principle, so as to be able to apply the HB principle to the incremental
linear problem instead of the nonlinear original system. Nonlinearity of all kinds can be treated using this
technique [14,15]. In the AFT variant, the HB of the Fourier coefficients is not explicitly performed. At each
increment (or iteration) in the continuation procedure, the unknowns are transferred to the time domain
(using the inverse fast Fourier transform,which is denoted IFFT below), so as to be able to use the original
system of equations. The nonlinear responses are then transferred back to the frequency domain using the fast
Fourier transform (denoted FFT below). The use of FFT/IFFT procedures seems to have started in Ref. [16].
This technique has been used, for instance, to analyse nonlinear vibrations in mechanical systems with contact
and dry friction [17]. Since the pioneering work on IHB and AFT, many variations have been proposed to
extend the applications, as well as to decrease the computational cost (see Refs. [18,19] for some recent
examples).

An alternative strategy is proposed here for applying the classical HBM with a large number of harmonics,
without avoiding explicit balancing. The idea is to apply a transformation to the original system of differential
equations before applying the HBM. The aim of this procedure is to transform the nonlinearities present in the
original system into purely polynomial quadratic terms. The classical HBM procedure can then be easily
applied. This transformation might seem to be a limitation of the method, since not every system can be recast
in polynomial quadratic form. However, it will be shown in this paper that a very large class of systems with
smooth equations can indeed be recast in quadratic form by making a few algebraic manipulations and a few
additions of equations and auxiliary variables. The idea of using a quadratic formulation to simplify the
(Fourier) series expansion was inspired by another numerical method, the so-called asymptotic numerical
method (ANM) [21,22] which was presented for the first time in 1990 [20]. ANM is a continuation technique
[23] involving high order power series expansion of the branches of solutions. For reasons that will be given
later on, this ANM continuation is the ideal means of solving the algebraic system resulting from the HB
method proposed here.

The paper is organized as follows: details of the transformation into a polynomial quadratic form, the
application of the HBM method and the principle of continuation are given in Section 2 in the cases of
autonomous systems. Three simple examples are given as an illustration. Section 3 is devoted to periodically
forced systems, and two further examples are presented. Section 4 gives the results of all the examples and ends
with some concluding comments and perspectives.

2. Presentation of the method for obtaining periodic solutions of autonomous systems

Let us consider an autonomous system of differential equations

Y =£(Y,2) (1)
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where Y is a vector of unknowns, /" a smooth nonlinear vector valued function and 4 a real parameter. The dot
stands for the derivative with respect to time . We assume that this system has branches of periodic solutions
when /A varies, and we want to find and follow them by applying the HBM and a continuation procedure
(path following technique). The important case of a forced (non-autonomous) system will be dealt with
separately in Section 3.

2.1. The HB principle

As recalled in the Introduction, the HBM consists basically in decomposing Y (¢) into a truncated Fourier
series:

H H
Y(t)= Yo+ Z Y i cos(kwt) + Z Y sk sin(kwt) 2)
k=1 k=1
This ansatz is put into Eq. (1) and f(Y, 1) is expanded into Fourier series. By balancing the first 2H + 1
harmonic terms, one obtains an algebraic system with 2H + 1 vector equations for the 2H 4 1 vector
unknowns Y;, the unknown pulsation w, and the parameter 4. Adding a phase condition [3] yields a system
with N equations and N + 1 variables. The branches of solutions of this algebraic system are then followed
using a continuation technique. This procedure provides only approximate periodic solutions, since in the
expansion of Eq. (1), all the harmonic terms greater than H remain unbalanced. However, if the number of
harmonics H is large enough, accurate solutions can be obtained.
The most crucial point is the expansion of the vector f(Y,1) into Fourier series. This can be quite
a straightforward procedure if (Y, 4) is a polynomial of degree two or three, and if the number of harmonics
H is sufficiently small. In this case, the expansion can be carried out by hand. But in the most general
situation, where f(Y, A) shows nonlinearities of any kinds, this computation can be very cumbersome, even
with the help of a symbolic software program. The only alternative is then to use numerical procedures to
estimate the Fourier series of f(Y, 1), by performing iterative FFT/IFFT steps, for example. This drawback
was the starting-point in the development of many variants of the HBM as mentioned in the Introduction.

2.2. A key point: the quadratic recast

The main aim of this paper is to present a simple but powerful procedure that overcomes the drawback
mentioned above. The idea is to recast the original system (1) into a new system where the nonlinearities are
at most quadratic polynomials. The application of the HBM subsequently becomes quite straightforward.
This new quadratic system, which can be written as follows:

m(Z) = c+ (2)+ q(Z,Z) (3)

can contain both differential and algebraic equations. N, is taken to denote the number of equations. The
unknown vector Z (size N,) contains the original components of the vector ¥ and some new variables which
are added to get the quadratic form. The right-hand side of Eq. (3) is written as follows: ¢ is a constant vector
with respect to the unknown Z, I(-) is a linear vector valued operator with respect to the vector entry, and ¢(-, -)
is a quadratic vector valued operator, which is linear with respect to both entries. At this stage, the three
vectors ¢, /() and ¢(-,-) may depend on the real parameter 4. However, it is preferable for the quadratic
operator ¢(-,-) not to depend on A, which may require introducing a new variable in Z (see Example 1). On the
left-hand side, m(-) is a linear vector valued operator with respect to the vector entry. The algebraic equations
correspond to zero values of m(-).

Since the nonlinearities are quadratic, the HBM can obviously be easily and systematically applied on
Eq. (3), even with a large number of harmonics. The question is now: can any system be easily put into the
form of Eq. (3)? As we will see, the answer is yes, for a very large class of nonlinear systems.

The idea of recasting a nonlinear system into a new one with a quadratic polynomial nonlinearity is
frequently used when considering the so-called ANM continuation method, which consists in computing
power series expansion of solution branches, see Refs. [21-24] for the basic algorithms and [25-27] for some
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applications in mechanics. The quadratic recast gives a very simple and systematic algebra for the series
determination, even with high orders of truncature. Similar benefits are obtained with the Fourier series
expansions.

It is now worth illustrating this main idea by giving some elementary examples where the recast from
Eqgs. (1) to (3) will be performed explicitly. We will deal first with the classical Van der Pol oscillator, the
Rossler system and a model for clarinet-like musical instruments. Other examples, with nonlinearities of others
kinds such as rational fraction, will be given later on.

Example 1. The Van der Pol oscillator. We take the following second-order autonomous system, known as the
Van der Pol oscillator, where the parameter A governs the amplitude of the nonlinear damping term.

=21 =—uH)iu+u=0 4)

This equation can be classically recast into first-order system (as Eq. (1)) by introducing the velocity v(¢) = wu(¢)
as a new unknown. We obtain

Uu="v

0=l —u*)—u (5)

If we now introduce the auxiliary variables w(f) = 1 — 12(¢) and r(f) = v(t)w(¢), the system can be written in the
form of Eq. (3) with Z = [u, v, w, 7]". The various terms are arranged below so that it will be clear to the readers
how the different functions m, ¢, / and ¢ are formed:

u 0 +v
v = 0 —u+ Ar
0 1 —w —u? 6)
0 0 +r —ow
~~ N~—— ——
m(Z) ¢ (Z,2) 9(Z.2)

We finally obtain two first-order differential equations and two algebraic equations with quadratic polynomial
nonlinearities. Only the operator / depends here on A.

Example 2. The Rossler system. We take the following first-order autonomous system of three equations
known as the Rossler system:

X=—-y—z
y=x-+ay
z=b+z(x—1) (7

where x, y, z are functions of time and «, b, ¢ are float parameters. This system can be written in the form of
Eq. (3) without any auxiliary variables (i.e. Z =[x, y, z]'):

x = 0 —y—z
y = 0 +x +ay
. (®)
z = b -z +zx
~— —~— —~—~ —~—
m(Z) 4 U(Z.2) 9(Z,2)

Here again, only the operator / depends on A. This example will be used here to show that the approach
presented in this paper can be used to find period-doubling and bifurcations with period 4.

Example 3. A model for clarinet-like musical instruments. In the case of small amplitude oscillations, a simple
model for reed instruments (clarinet, saxophone, etc.) can be written using a modal formulation (see Ref. [28]):

. . 2 2
X+ ¢,0:X + W, X = w,p
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P+ 20,ep, + 02p, =2¢/li Vne[l...N]

u={l—-A+x)\/2—p

N
P=>_p ©)
n=1

where the unknowns x, p,_; », p, u are functions of time and ¢,, w,, a,, ®,, ¢, I, { are given parameters
describing either the physics or the player’s action. N is the number of acoustic modes. 4 stands here for the
blowing pressure.

It is worth noting that even if this system contains a square root, it can be recast in the form of Eq. (3):
if we introduce the auxiliary variables y = x, z, = p, and v = /4 — p, system (9) can be rewritten, with
Z =[X,0,P1>---2PN+Z1 ... 2N, 1, 0] as follows:

X = 0 +y
¥ = 0 +w?p — q.0,y — 02x

P = 0 +z, Vne[l...N]

zn—%u = 0 —20(,,czn—wflpn Vne[l...N]
0 -0 —ut (1= Ay +oxv (10)
0 = 0 —paptetpy
- = < 7 —Z_
m(Z) o(4) (Z.,0) 9(Z,2)

Here, the linear term /, but also the constant term c¢, are functions of A.

2.3. The HBM applied to a quadratic system

In this section, the HBM is applied to system (3). The unknown (column) vector Z is decomposed into
Fourier series with H harmonics:

H H
Z(t)=Zo+ Y Zexcostkot) + Y Zyy sin(kar) (11)
k=1 k=1
The components of the Fourier series are collected into a large (column) vector U, with size (2H + 1) x N,,
where N, is the number of equations in Eq. (3):

U=120.2Z1.Z51: 22 Zss -+ Zeys Zo (12)

By introducing the expansion (11) into the set of Eq. (3), collecting the terms of the same harmonic index, and
neglecting the higher order harmonics, one obtains a large system of (2H + 1) x N, equations for the
unknown vector U,

wM(U) = C + L(U) + Q(U, U) (13)

The new operators M(-), C, L(-), and Q(.,-) that apply to U depend only on the operators m(-), ¢, I(-) and ¢(-, -)
of Eq. (3) and on the number of harmonics H. The explicit formulas have been given in Appendix 1 for a sake
of brevity. It should be noted that these expressions for M(-), L(-) and Q(-,-) are the same in all the examples
presented. The change from one particular system to another only involves the operators m(-), /(-) and ¢(-, -).

The final system (13) contains (2H + 1) x N, equations for the (2H + 1) x N, unknowns U plus the angular
frequency w and the continuation parameter A. Since the original system is autonomous, a phase condition has
to be added to Eq. (13) to define a unique orbit. Indeed, the time # does not appear in Eq. (3) and if U(¢) is a
solution of Eq. (13) then U(z + 7) is also a solution, for any 7. We refer here to textbooks dealing with periodic
solution continuation [3,7,4] for the choice of the phase condition.
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2.4. The continuation procedure

2.4.1. Framework
As the result of the HB operation, we now have to solve an algebraic system

R(U) =0 (14)

with Re RY and U=[U' ) 0]' e R¥! (N =(2H + 1) x N, +1). Any numerical continuation method
[29,30,3] and any suitable software (see Ref. [31] for an overview) can be used for this purpose. However, in
this paper we will use the so-called ANM, on which the idea of the quadratic recasting was based. It is worth
noting that the final system (13) is already quadratic with respect to U and w, and that the application of the
ANM is therefore quite straightforward.

In the continuation procedure, a pseudo-arc length parametrization will be used in order to be able to pass
the limit points with respect to A. The parameter A will therefore now become an unknown, like U and w. It is
now mandatory to specify how the operators m, ¢, / and ¢ in Eq. (3) depend on A. In the three examples
presented here, we have organized the terms of equations so that the parameter A only appears in the operators
¢ and /. In addition, we have managed to make this dependence linear. Once again, this formulation is not
limited to the three examples presented here, but it can be obtained for a very large class of dynamical systems
provided suitable additional variables are introduced. We recall that the parameter 4 should not appear in
the operator ¢, for which the HBM algebra is the more complex. For example, if there is a term Au? in Eq. (3),
it should be rewritten as v with the auxiliary variable v = »?, and put into / instead of ¢.

In what follows, it is therefore assumed that ¢ and / can be written as

c=cy+ Acy
1¢) = 1o(-) + 211 (15)
where ¢, ¢, [y and /; are independent of /. Under this assumption, the operators C and L simply become
C=Cy+ 1C
L(-) = Lo(-) + AL1(") (16)

Note that the expression for Cy, C; and Ly, L; in terms of ¢, ¢; and [y, /; are exactly the same as those given in
Appendix 1 for C and L in terms of ¢ and /. The final algebraic system (14) becomes

R(U) = L0 + L(U) + Q(U, U) (17)
with U =[UY, A, w]' and
L0 = C,

L(U) = Lo(U) + /C,

QU,U) =Q(U,U) + AL(U) — oM (U) (18)

In Eq. (17), LO is a constant vector, L(-) is a linear vector valued operator and Q(-,-) is a bilinear vector
valued operator. We will now briefly review the ANM continuation technique for solving quadratic system
equation (17).

2.4.2. The ANM continuation

One of the main particularities of the ANM is that it gives access to branches of solution in the form of
power series. Assuming that we know a regular solution point Uy, the branch of solution passing through this
point is computed in the form of a power series expansion (truncated at order n) of the pseudo-arclength path
parameter a = (U — Ug)'U;, where U; is the tangent vector at Uy:

U(a) = Uy + aU; + a*Uy + a*Us + - - +a"U, (19)
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The series (19) is replaced in Eq. (17) and each power of a is equated to zero, giving a series of linear systems:

® Order 0: LO + L(Up) + Q(Uy, Uy) = 0, which is obvious since Uy is a solution of Eq. (17).

® Order 1: L(U)) + Q(Up, U;) + Q(U;, Up) = 0, which can also be written Jy,U; = 0 where Jy, € RV*¥*! is
the Jacobian matrix of R evaluated at Uj.

® Order 2<p<n: Jy,U, + S22/ Q(U,,U,_;) = 0.

The original nonlinear problem has therefore been reduced to a series of n linear systems of N, equations.
However, at each order, the linear systems are under-dimensioned since they have N, + 1 unknowns. The
additional equations required are obtained by inserting Eq. (19) into the definition of the path parameter a
given above. This gives:

® Order 1: U{U; = 1.
® Order 2<p<n: U|U, = 0.

2.4.3. Comments

e The original nonlinear system of N, equations has been transformed into # linear systems of N, equations,
which have to be solved successively (as in classical perturbation methods), i.e., U, is deduced from terms
occurring at lower orders.

e The range of utility of a truncated power series is generally limited because the series have a finite radius of
convergence. Once each U, (p € [1... N]) has been found, the range of utility of the series expansion (19) is
defined by the value ay,x such that

Va € [0 ama] [IR(U(@)ll <é (20)

where ¢, is a user-defined tolerance parameter (see Refs. [24,32] for details of the ay., calculation). Note
that the range of utility ay,.y is generally approximately equal to the radius of convergence of the series [33].
e The series expansion and the associated range of utility apn.x only define one part of the branch of solutions,
which is called a section. To determine the entire branch, it is necessary to restart the whole series
calculation from successively updated starting points Uy. The simplest way of performing this updating is to
take the end point of a previously computed section as the starting point for the next section. This is the
principle of continuation with the ANM. Finally, the entire branch is given as a succession of different
branch sections, where the length of each section is automatically given by its range of utility amax.
e The ANM continuation approach has the following advantages:
o The solution branch is known analytically, section by section.
o Since all the linear systems to be solved have the same Jacobian matrix, the computational cost of the
series (19) is low.
o Since the size of the section is given by the convergence properties of the current step, i.e., by the values
of amax, the ANM continuation algorithm does not require any special step-length control strategies.
o The ANM continuation algorithm is highly robust, even when the branch contains sharp turns. Branch
switching can therefore be easily performed, using small perturbations in the system.

2.5. Implementation in the MANLAB software program

2.5.1. A brief presentation of MANLAB

MANLAB is an interactive software program for the continuation and bifurcation analysis of algebraic
systems, based on ANM continuation. The latest version is programmed in Matlab using an object-oriented
approach [34]. MANLAB has a graphical user interface (GUI) with buttons, on-line inputs and graphical
windows for generating, displaying and analysing the bifurcation diagram and the solution of the system. To
enter the system of equations, the user has to provide three vector valued Matlab functions corresponding to
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the constant, linear and quadratic operators L0, L and Q. As an example, take the biochemical reaction
system used by Doedel et al. in Ref. [5]

Uj

U, 1) = 2uy — 100——————7=0
ri(ur, uz, ) = 2up — uy + T
u
Fatn, 2, 2) = 2uy — g + 100———— — (1 + ) = 0 1)
1 +u + u3

Introducing the following additional variables v; = u; + u%, vy = U + u%, v3=1/(1+v1)and vs = 1/(1 + v2),
the system can be rewritten with quadratic polynomial nonlinearities as follows:

0 + U —up — A + 100ujv3 =0

—u  + U —up — A + 10004 =0
0 + v — U - us =0
0+ vy — Uy - u3 = (22)
-1 + U3 + U103 =0
\—/1_/ + 4 + V204 =0
L0 L(U) QL)

The first two equations correspond directly to Eq. (21). The last four define the auxiliary variables vy, vy, v3, v4.
The constant, linear and quadratic terms in each equation have been split to define the three operators L0,
L and Q. In the MANLAB software program, the unknowns are collected in a single vector
U = [uy,up,v1,02,03,04,4], and the three operators are given by the following vector valued functions
(1 = 0.05 in the case of this example):

function [LO0] = LO function [L] = L(U) function [Q] = Q(U,V)
LO = zeros(6,1); L =zeros(6,1); Q =zeros(6,1);
LO(1) = 0; L(l) =2*U(1)-U(2) -U(7); Q(1) =100*U(1)*V(5);
LO(2) = -0.05; L(2) =2*U(2)-U(1) -U(7); Q(2) =100*U(2)*V(6);
LO(3) = 0; L(3) =U(3)-U(1); Q(3) = -U(1)*V(1);
LO(4) = 0; L(4) =U(4)-U(2); Q(4) = -U(2)*V(2);
LO(5) = -1; L(5) =U(5); Q(5) = U(3)*V(5);
LO(6) = -1; L(6) =U(6); Q(6) = U(4)*V(6);

2.5.2. Implementation of the periodic solution continuation in MANLAB

To compute the branches of periodic solutions, the system has to be first recasted in the form of Eq. (3) with
account of the additional decomposition (15). This is probably the most unusual and difficult task for a new
user. Subsequently, it is only necessary to provide the MANLAB software program with the operator m(-),
o, ¢1, [1(-) I1(-) and ¢(-,-). The functions L0, L. and Q, which are the actual input for MANLAB, have been
programmed once for all, using the expression in Eq. (18) and the formulas given in Appendix 1. The examples
presented in this paper are available online [6].

3. The case of a periodically forced system

We now focus on periodically forced (non-autonomous) systems:
Y =1, Y, ) (23)

where f is periodic in ¢, with the period T (forcing period). We look for periodic solutions (responses) with a
period pT or T/p, where p is an integer. A classical strategy consists in transforming Eq. (23) into an
augmented autonomous system [3], by adding an oscillator with the desired forcing period in the system of
equations, for instance Ref. [7].
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In what follows, a direct approach will be used. It consists in expanding the forcing term into harmonics,
and taking them into account in the balance of individual harmonics. This approach is illustrated below with
two further examples.

Example 4 (Forced Duffing oscillator). The normalized forced Duffing oscillator is the non-autonomous
equation:

it + 2uit + u+ u’ = f cos(At) (24)

We take the damping coefficient u and the force amplitude f constant, and use the forcing angular frequency
as the varying parameter A. By using v(¢) = i(t) and w() = u*(¢), this equation can be recast as follows:

u = v
v = fcos(i) —2uv —u —uw
(25)
0 = 0 w —uu
~—~
m(Z) o(t,4) (Z) 9(Z2,2)

where Z = [u, v, w]', and the forcing term is deliberately put into ¢. The forcing frequency is now related to the
response frequency by putting 4 = w or possibly, A = pw (p is an integer). The term ¢(¢) is then expanded into
harmonics with respect to .

This results in slight changes in the procedure:

e Because of the synchronization of the response and the forcing, the phase condition has to be removed.
Note that the parameter 4 is no longer an unknown, since it was chosen as a multiple of w. In comparison
with the case of an autonomous system, both the number of equations and the number of unknowns have
decreased by one.

e In the final system (17) and (18), the operators C; and L, disappear and the forcing amplitude f has to be
accounted for in L.

Lastly, we take the Rayleigh—Plesset equation, which is used to model the large amplitude vibrations of a
gas bubble in a fluid. The forcing is handled slightly differently and this example also shows how to cope with
a power of —3.

Example 5. The forced Rayleigh—Plesset equation [35]. Let R be the radius of the vibrating bubble, and R, the
radius at rest. The equation of motion of the bubble is

RE+2R =4 <&)3—1 + Beos(J1) (26)
20 R )

where 4 and B are fixed. We introduce the normalized radius u = R/Ry and the (normalized) velocity
v = R/Ry. Dividing Eq. (26) by RJ and defining a = A/R3, b = B/R], we get the first-order system

u=v
ui = a(u™ — 1) — 3> + bcos(A1) (27)
We now introduce the following auxiliary variables x = 1/u, y = x?, and z = v?, and arrive at
u=v
o = a(y* — x) — 3xz + bx cos(At) (28)

After undergoing this transformation, the system is quadratic but the forcing term has now been multiplied by
the unknown function x, and it is no longer a constant term with respect to the unknown. We introduce
another auxiliary variable r(f) = cos(4f), and replace the term bxcos(if) by bxr. Finally, we obtain the
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following system, where the first two equations stand for Eq. (28) and the last four define the auxiliary
variables:

u = 0 + v +
b = 0 + (—ax) + ay* — 3xz + bxr
0 = 1 + 0 + (—ux)
0 = 0 + y + (—xx) (29)
0 = 0 + z + (—wv)
0 — cos(A?) + r +
m(Z) (1) I(Z) 9(Z.2)

Here the unknown vector is Z = [u, v, x, y, z,r]', and the forcing term is clearly present in the operator c.
4. Numerical results on selected examples

In the following selected examples, the numerical results obtained using the approach presented in this
paper are either compared with time-domain simulations to show the validity of our approach, or used to

illustrate particular features: the influence of the number of harmonics in the case of the Van der Pol oscillator,

(a) One period of the unknown u in the time domain

Solution with 10 harmonics
‘ i : : -~ — Solution from time domain ODE-solver |~
-25 1 l | i > . :

0 1 2 3 4 5 " 7 7 5
time (s)

Attractor in the phase space (u,v)

g T T T T T T T T T
4 -
2 -
> L o
2 |-
: : R e : : - — — Solution from time domain ODE-solver
| | | | | T T T T
-6
-25 -2 -15 -1 -0.5 (1] 05 1 15 2 25

Fig. 1. The Van der Pol oscillator (Eq. (4)): comparison between the harmonic balance results and those obtained with a time-domain
simulation. Influence of the number of harmonics H taken into account ((a) H = 10, (b) H = 50).
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(b) One period of the unknown u in the time domain
25 T T T | T T T

- ——  Solution with 50 harmonics

: — — — Solution from time domain ODE-solver
L | | | T T T

-25
0 1 2 3 4 5 6 7 8 8
time (s)
Attractor in the phase space (u,v)
6 T T T T T T
4 - .
2 | .
> 0 -
-2 |- —]
= —— Solution with 50 harmonics : ]
~ — — Solution from time domain ODE-solver
& i | | ] | T : ;
-25 -2 -15 -1 -05 0 05 1 15 2 25

Fig. 1. (Continued)

the ability to follow period-doubling bifurcations in that of the Réssler system, the ability to follow a direct or
inverse Hopf bifurcation in that of the clarinet model, and to illustrate a forced system, in that of the Duffing
oscillator.

Example 1 (The Van der Pol oscillator). Numerical results obtained on the Van der Pol oscillator (Eq. (4)) are
presented in Fig. 1. Good agreement was obtained with the results of a time-domain simulation, performed
using Matlab ODE solvers. As expected, the number of harmonics H in the solution sought by the HBM had
to be adapted to span the bandwidth of the solution obtained by direct integration. In the case of Fig. 1, A = 3,
which requires having a relatively high H to match the reference solution.

Example 2 (The Rossler system). The ability to follow period-doubling bifurcations is illustrated in Fig. 2.
Following these bifurcations is more difficult in the case of autonomous systems than in forced systems, since
the period of oscillation is also unknown. Moreover, since a T-periodic solution is also a 27-periodic solution,
one cannot expect the value of the period obtained by the HB process to be doubled when crossing a period-
doubling bifurcation. The strategy used here therefore consists in introducing complex subharmonic
amplitudes as additional unknowns. To detect K period-doubling bifurcations, the solution is then sought as

H H
k k
Zt)=Zy+ Z Z. ) cos (2—K wt> + Z Z ) sin (2—K cot) (30)
k=1 k=1
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When the solution belongs to the T-periodic solution branch, Z k|-, x—1 =0 and Zx|;—1_x_1 = 0. When
the solution belongs to the 27 -periodic solution branch, Z xl,_; g j4xoxt =0 and Zskl,y g6 = 0.
One practical consequence in terms of the computational cost is that in order to span the same bandwidth,
the number of harmonics has to be multiplied by 2X. This case is illustrated in Fig. 2 where H = 10 from the
T-periodic solution to H = 2% x 10 = 40 after two period-doubling bifurcations.

Example 3 (The clarinet model). Two typical examples of the bifurcation diagrams obtained with the clarinet
model are shown in Fig. 3. These pictures focus on the oscillation threshold in order to show the robustness of
the method, even at singular points. As can be seen from both pictures, the radius of convergence of the power
series expansion decreases when approaching a bifurcation point (and hence the length of each section of a
branch lying between two consecutive points in Fig. 3 decreases). This behaviour is typical of ANM [33].

Example 4 (The forced Duffing oscillator). Fig. 4 shows the frequency—amplitude diagram of the response
obtained with the method presented here. A classical bent resonance curve can be observed, as well as some

—— Harmonic balance
- — — Time domain simulation

(a) Configuration space (x,y,z) 2D projection in the (x,y) plane

2D projection in the (x,z) plane 2D projection in the (y,z) plane

3.5 T T T T T T T 3.5 T T T T T T T T T

-4 -3 -2 -1 0 1 2 3 4 5 6 -6 -5 -4 -3 -2 -1 0 1 2 3 4

X y

Fig. 2. The Réssler system (Eq. (7) with a = b = 0.2): comparison between the results obtained using the harmonic balance method and a
time-domain simulation. These three figures show the ability of the method to follow the sub-harmonic cascade from (a) A = 2.5 (period T),
to (b) 4 = 3.5 (period 27T after a first period-doubling bifurcation) and (c) 2 = 4 (period 47T after a second period-doubling bifurcation).



B. Cochelin, C. Vergez | Journal of Sound and Vibration 324 (2009) 243-262 255

—— Harmonic balance

— — — Time domain simulation

(b) Configuration space (x.y,z) 2D projection in the {x,y) plane

2D projection in the (x,z) plane

2D projection in the (y,z) plane
9 T T T T E] T . . T T

-B -4

Fig. 2. (Continued)

additional peaks corresponding to superharmonic resonances. Note that only the individual amplitude

A; = \/(u; + u2) of the odd harmonics have been plotted, since the even harmonics (4, A2, A4, . ..) are zero.
The computation of this branch of periodic orbits required 25 steps of ANM-continuation when 5 harmonics
were included, and 35 steps when 9 harmonics were included. The curves obtained for harmonics 1 and 3 were
slightly hanged when shifting from H = 5 to 9 harmonics in Eq. (11). The curve obtained for As is more
affected, which confirms the logical result that more than 5 harmonics have to be used to obtain an accurate
result with harmonic 5. We also checked that the curve obtained for A5 was only very slightly modified when
shifting from H = 9 to 11 harmonics in Eq. (11).

5. Discussion and conclusion

The key idea in this study is the quadratic recast. It is worth pointing out that the present method contains
two quadratic recasts. The first one, which occurs in the time domain, transforms the original system (1) into
(3), and is presented in Section 2.2. The second one transforms the algebraic system (13) obtained with the
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Harmonic balance

Time domain simulation

(c) Configuration space (x,y,z) 2D projection in the (x,y) plane

2D projection in the (y,z) plane
12 T T T T ; T

Fig. 2. (Continued)

HBM, into the final system (17) which is solved by the ANM. The operators in (13) and (17) are linked by (16)
and (18). This point accounts for many of the characteristics of the method presented here:

® The whole procedure takes place in the frequency domain using an analytical expression for the system to
be solved (as with the classical HB) and allows to use an arbitrarily high number of harmonics (as with the
AFT procedures).

o In the ANM continuation, no iterative process are used to solve the algebraic system, and hence no
problems of convergence arise. The computational cost is almost predictable and fairly rather low. On the
contrary, convergence of the iterative process can be difficult with AFT procedures [39, Section 4.6, p. 117].

® There is no need for FFT/IFFT procedures, which increases the computational load in the case of AFT
approaches.

o No temporal discretization has to be performed (since the whole procedure is in the frequency domain), and
there is therefore no need to cope with aliasing.

e There is no need to use numerical schemes to compute derivatives. Since the problem is a quadratic one, the
Jacobian is calculated analytically and this can be done very easily. This is a considerable advantage of the



B. Cochelin, C. Vergez | Journal of Sound and Vibration 324 (2009) 243-262 257

(@)
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0.8
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0.012 0.014 0.016 0.018 0.02 0.022
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(b)
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ch

04
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0 T T I T -t I =)

0.0106 0.0108 0.011 0.0112 0.0114 0.0116 0.0118
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Fig. 3. The clarinet model (Eq. (9) with ¢, =0.01, 0, = 6597, H =3, N =15, c =340, (=02, [, = 5.6e — 08, [, = 4e — 08, C,, = 1.4,
r=0.007, w; = 2426.5, wy = 7279.5, w3 = 12132.5, wy = 169854, ws = 21838.4, o = 0.11, o = 0.19, o3 = 0.25, oy = 0.3, 005 = 0.34):
depending on the length of the resonator, the bifurcation will be either a direct Hopf bifurcation (left picture, L = 0.22) or an inverse Hopf
bifurcation (right picture, L = 0.2).

approach presented here. Indeed, as stated by Ref. [39, p. 17], usually “analytical calculation of the
Jacobian involves considerable calculation and transformation” but on the other hand, when considering
numerical calculation of the Jacobian, “for very nonlinear circuits, the error introduced in the Jacobian
estimation results in inaccurate updates of the unknowns and a large number of iterations and possibly no
convergence’’.

As stated in Ref. [12], to apply HB, “it is always necessary to write specific computation programs for
different nonlinear models”. Here, on the contrary, the procedure is simple and rather general because of the
natural splitting between the automated part, which is independent of the problem (i.e. the transformation
from operators ¢,/, ¢ to operators L0, L, Q and the ensuing solving using the ANM), and the part which
depends on the particular problem to be solved (the writing of operators ¢, /, ¢) which is let to the users. From
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(a)

Harmonic amplitude A1, A3, A5

1 —_— T
Frequency,®

Harmonic amplitude A1, A3, A5

0 0.1 0.2 0.3 0.4 0.5
Frequency, ®

Fig. 4. Duffing oscillator, Eq. (24) with u = 0.1 and /" = 1.25 as in Ref. [19]. The figure shows the amplitude of the harmonics 1, 3 and 5
versus the frequency forcing w. Solid line: results when 5 harmonics are included (H = 5 in Eq. (11)). Dash line: results when 9 harmonics
are included. The figure on the right is a zoom of the region w <0.6.

the point of view of the users, this means that the work required is relatively easy and the software is simple to
use. In addition, very few parameters have to be defined by the users: the number of harmonics in the solution
and parameter ¢, in Eq. (20), which controls the accuracy of the ANM computation.

In this paper, we have presented only small-sized systems for the sake of simplicity. The method can be
obviously extended in principle to large systems of equations although this may require some additional



B. Cochelin, C. Vergez | Journal of Sound and Vibration 324 (2009) 243-262 259

technical work, and introduce limitations due to the lack of computer resources. In Ref. [36], the method has
been applied to compute the forced responses of geometrically nonlinear elastic structures discretized using the
finite element method. It is well known that with problems of this kind, the equations of motion are second-
order differential equations in terms of the displacement nodal variables u, and that they show a polynomial
cubic nonlinearity. Choosing the nodal velocity v and the second Piola—Kirchhoff S (at the Gauss point) as
auxiliary variables, the system of equations can easily be written in the form of a first-order system with
quadratic polynomial nonlinearities. When a cosine forcing term is applied, they read (in the discrete form)

Uu=v
Mp = — / (Br + Byr(u))'S dv + F cos(At)
v

S = D(BL + %BNL(L{))M (31)

where M is the mass matrix, D is the Hooke operator and B; and By, are the linear and nonlinear
strain—displacement operators [37]. In this form, the governing equations consist in a group of first-order
differential equations (velocity definition, equation of motion) and a group of algebraic equations (constitutive
law at the Gauss point of the finite elements). Both groups are quadratic in # and S. The algebra given in
Appendix 1 has been directly introduced into a home-made FEM code, at the element level.

To conclude, it is proposed to discuss the limitations of this method and suggest some possible lines of
future research. First of all, it is worth noting that when the original system is not directly in the same
quadratic form as Eq. (3), introducing auxiliary variables, as done in this paper, examples may lead to
additional (possibly non-physical) solutions. For example, in the case of the clarinet model (Example 3), a
variable v = ,/y —p is introduced, and then further defined by the quadratic equation v* =y — p. This
definition corresponds to v = £,/y — p. In practical terms, this means that the user has to check that the
branch of solution computed corresponds to a positive v.

The main limitation of the method presented is that the original systems cannot all be put into the quadratic
form equation (3). For this reason, problems where one or several relations are given in the frequency domain
(typically, when some variables are linked through an impedance) cannot be treated. Similar difficulties arise
when the original system contains functions (trigonometric functions, exponential functions, non-integer
powers function, etc.) that are applied to the unknowns. The classical pendulum model 0 + sin(f) =0 is a
good example of systems of this kind. In these cases, we can generally introduce new variables and new
differential equations, so that the functions are generated by the system itself. In the case of pendulum model,
v = 0 and the two new variables s(7) = sin(0(¢)) and ¢(r) = cos(0(7)) are introduced. Taking the derivative with
respect to time for the last two equations, we obtain

0=v
V= —s8
§=cv
¢ = —sv (32)

This quadratic system corresponds to the pendulum model, provided the following two initial conditions are added:
5(0) = sin(6(0))

¢(0) = cos(6(0)) (33)

The application of the HBM to Eq. (32) will now be quite straightforward, but, because of Eq. (33), the final
algebraic system will not be quadratic. In these cases, the application of the ANM continuation is still feasible but this
requires more elaborate algebra for computating the power series, as explained in Refs. [38,32]. The efficiency of the
present method on the pendulum model will be tested in a near future. Another interesting idea would be to test
whether this method can be used to solve regularized non-smooth dynamic problems, and for instance, the case of
vibrating systems with contact conditions and friction laws.
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Appendix A
Here, we give the expression for the operators M, C, L and Q in Eq. (13) in terms of m, ¢, [, ¢ and H. We recall

that Eq. (13) is obtained by substituting Eq. (11) into Eq. (3) and by collecting the terms with the same harmonic
index (cosines and sines). The inputs of M, L and Q are the vector U, which contains the Fourier coefficients of Z()

U= [ZE)’ZE-,UZ;,I’ZL,Z’ZE,z’""ZZ,H’ZE,H]t (A1)
A.1. Constant term
The constant vector ¢ is associated with the harmonic zero. The operator C is simply
C =[¢,04,0,...] (A.2)
A.2. Linear term

For the linear operator /, we have

H
I(Z() = l(ZO + Z Z.jcos(kwt) + Zgx sin(kwl))

k=1
= U(Zy) + (Z,)cos(wt) + [(Z;) sin(wt) + [(Z.2) cos(2ewt) + - - - (A.3)

The operator L is
L(U) = [[(Z0)', (Z ) U Zs1)' U Ze2) S U Zs2) s - U Z o) U Z s i)' (A4)

For the linear operator m, we have

H
m(Z(t)) = m (Z Zs ko cos(kwt) — Z ko sin(kwt))

k=1
= 04 m(Z;,1)o cos(wt) — m(Z,1)w sin(wt) + 2m(Z)w cos(Qwt) + - - - (A.5)
The operator M is
MU) = [0, m(Zs))', =m(Zc1)', 2m(Zs0)' s =2m(Z.2)'s . .., H(Zs ), —Hm(Z . i)' (A.6)

A.3. Quadratic term

With the notation Z©® = Z; and Z? = Z.;cos(wt) + Z;,; sin(wt), the decomposition of Z(¢) is conveniently
rewritten as

H
Z(ty=> 7" (A.7)
i=0
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For the operator ¢, we have

H H
qxX@0, Y@ =D qx?, v
i=0 j=0
H ) H ) H H ) )
=g(XO, Y+ > g(x?, Y+ > g(x O, ") +> > q(x?, vY) (A8)
i=1 j=1 i=1 j=I

When i>1 and j>1, g(X®, Y?) give harmonics i +j and i — j as follows:
gqX O, YY) = Hg(X i Ye) = 4(X s, Y )} cos((i + fot)
+ %{q(Xc,i: Ys,j) + q(Xs,ia YL‘,/')} Sin((i +J)w[)
+ %{q(Xc,i: Yc,j) + Q(X&i, YS,/')} COS((i _j)wt)
+ %{q(Xs,ia Yc,/‘) - q(XL’,ia Ys,/)} sin((i — j)wt) (A.9)

By grouping the terms with the same harmonics index, and canceling any harmonics higher than index H,
we have

H
qX(0, Y1) = gy + Y _ gex costkor) + g sin(kar) (A.10)
k=1
with
71
g0 = 4(Xo0. Yo) + D _5a(X s Ye) + (X, Yy} (A.11)
j=1
and when i>1
i—1
1
qei = {q(X i, Yo) + q(Xo, Yei)} + 5 {g(X ey, Yeij) —q(Xyy, Yiip)}
=1
| 1
+ > X e, Yejoi) + 4 X, Yijoi)} +Aq(X ejmis Yej) + (Xsjmi Y} (A.12)

j=i+1

i—1
1
qs,i = {q(XS,ia YO) + 61(1\/0: Ys,i)} + E E {Q(Xc,/, Ys,i—j) + q(Xs,ja Yc,i—j)}
Jj=1

H
1 1
+ D X, Yy + qX gy Yoy} + 510X i Vi) = 4Ky Yep)) (A.13)
J=i+1

References

[11 A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations, Wiley Series in Nonlinear Science, 1979.

[2] W. Szemplinska-stupnicka, The Behaviour of Nonlinear Vibrating Systems— Vol I-Fundamental Concepts and Methods: Application to
Single-degree-of-freedom Systems, Kluwer Academic Publishers, Dordrecht, 1990.

[3] R. Seydel, From equilibrium to chaos, practical bifurcation and stability analysis, Interdisciplinary Applied Mathematics, Vol. 5,
Springer, Berlin, 1994.

[4] A.H. Nayfeh, B. Balachandran, Applied Nonlinear Dynamics: Analytical Computational and Experimental Methods, Wiley Series in
Nonlinear Science, 1995.

[5] E. Doedel, H.B. Keller, J.P. Kernevez, Numerical analysis and control of bifurcation problems (I) bifurcation in finite dimensions,
International Journal of Bifurcation and Chaos 1 (1991) 439-528.

[6] (http://manlab.lma.cnrs-mrs.fr/) (last successfully accessed, 17th December 2008).

[7] E.J. Doedel, Lecture notes on numerical analysis of nonlinear equations, in: B. Krauskopf, H.M. Osinga, J. Galan-Vioque (Eds.),
Numerical Continuation Methods for Dynamical Systems, Springer, Berlin, 2007, pp. 1-49.


http://manlab.lma.cnrs-mrs.fr/

262 B. Cochelin, C. Vergez | Journal of Sound and Vibration 324 (2009) 243-262

[8] Krylov, Bogoliubov, Introduction to Nonlinear Mechanics, Princeton University Press, New Jersey, 1947 (English translation of
Russian edition from 1936).
[9] M. Urabe, Galerkin’s procedure for nonlinear periodic systems, Archives for Rational Mechanics and Analysis 20 (1965) 120-152.

[10] A. Stokes, On the approximation of nonlinear oscillations, Journal of Differential Equations 12 (1972) 535-558.

[11] M.S. Nakhla, J. Vlach, A piecewise harmonic balance technique for determination of periodic response of nonlinear systems, /[EEE
Transactions on Circuit Theory 23 (1976) 85-91.

[12] Z.K. Peng, Z.Q. Lang, S.A. Billings, G.R. Tomlinson, Comparisons between harmonic balance and nonlinear output frequency
response function in nonlinear system analysis, Journal of Sound and Vibration 311 (2008) 56-73.

[13] S.L. Lau, Y.K. Cheung, Amplitude incremental variational principle for nonlinear vibration of elastic systems, ASME Journal of
Applied Mechanics 28 (1981) 959-964.

[14] V.P. Iu, Y.K. Cheung, Non linear vibration analysis of multilayer sandwich plates by incremental finite elements, part I theoretical
development, Engineering Computation 3 (1986) 36-42.

[15] C. Pierre, A.A. Ferri, H. Dowell, Multi-harmonic analysis of dry friction damped systems using an incremental harmonic balance
method, ASME Journal of Applied Mechanics 52 (1985) 958-964.

[16] F.H. Ling, X.X. Wu, Fast Galerkin method and its application to determine periodic solutions of non-linear oscillators, International
Journal of Non-linear Mechanics 22 (1987) 89-98.

[17] S. Navicet, C. Pierre, F. Thouverez, L. Jéséquel, A dynamic Lagrangian frequency-time method for the vibrations of dry-friction-
damped systems, Journal of Sound and Vibration 265 (2003) 201-219.

[18] S.K. Lay, C.W. Lim, B.S. Wu, C. Wang, Q.C. Zeng, X.F. He, Newton-harmonic balancing approach for accurate solutions to
nonlinear cubic and quintic Duffing oscillators, Applied Mathematical Modelling 33 (2) (2009) 852-866.

[19] L. Liu, J.P. Thomas, E.H. Dowell, P. Attar, K.C. Hall, A comparison of classical and high dimensional harmonic balance approaches
for a Duffing oscillator, Journal of Computational Physics 215 (2006) 298-320.

[20] N. Damil, M. Potier-Ferry, A new method to compute perturbed bifurcation: application to the buckling of imperfect elastic
structures, International Journal of Engineering Sciences 26 (1990) 943-957.

[21] L. Azrar, B. Cochelin, N. Damil, M. Potier-Ferry, An asymptotic-numerical method to compute the post-buckling behaviour of
elastic plates and shells, International Journal for Numerical Methods in Engineering 36 (1993) 1251-1277.

[22] B. Cochelin, N. Damil, M. Potier-Ferry, Asymptotic-numerical method and Padé approximants for non-linear elastic structures,
International Journal for Numerical Methods in Engineering 37 (1994) 1187-1213.

[23] B. Cochelin, A path-following technique via an asymptotic-numerical method, Computers and Structures 53 (1994) 1181-1192.

[24] B. Cochelin, N. Damil, M. Potier-Ferry, The asymptotic-numerical method: an efficient perturbation technique for nonlinear
structural mechanics, Revue Européenne des Elements Finis 3 (1994) 281-297.

[25] H. Zahrouni, B. Cochelin, M. Potier-Ferry, Computing finite rotation of shells by an asymptotic-numerical method, Computer
Methods in Applied Mechanics and Engineering 175 (1999) 71-85.

[26] L. Azrar, R. Benamar, M. Potier-Ferry, An asymptotic-numerical method for large amplitude free vibrations of thin elastic plates,
Journal of Sound and Vibration 220 (1999) 625-727.

[27] J.M. Cadou, B. Cochelin, N. Damil, M. Potier-Ferry, ANM for stationary Navier-Stokes equations with Petrov—Galerkin
formulation, International Journal for Numerical Methods in Engineering 50 (2001) 825-845.

[28] F. Silva, V. Debut, J. Kergomard, C. Vergez, A. Deblevid, P. Guillemain, Simulation of single reed instruments oscillations based on
modal decomposition of bore and reed dynamics, Proceedings of the International Congress of Acoustics, Madrid, Spain.

[29] E.L. Allgower, K.G. Georg, Numerical Continuation Methods, An Introduction, Springer Series in Computational Mathematics,
Vol. 13, Springer, Berlin, 1990.

[30] B. Krauskopf, H.M. Osinga, J. Galan-Vioque, Numerical Continuation Methods for Dynamical Systems, Path Following and Boundary
Value Problems, Springer, Berlin, 2007.

[31] W. Govaerts, Y. Kuznetsov, Interactive continuation tools, in: B. Krauskopf, H.M. Osinga, J. Galan-Vioque (Eds.), In Numerical
Continuation Methods for Dynamical Systems, Springer, Berlin, 2007, pp. 51-75.

[32] B. Cochelin, N. Damil, M. Potier-Ferry, Méthode Asymptotique Numérique, Collection méthodes numériques, Hermes Sciences
Lavoisier, 2007 (in French).

[33] S. Baguet, B. Cochelin, On the behaviour of the ANM continuation in the presence of bifurcation, Communication in Numerical
Methods in Engineering 19 (2003) 459-471.

[34] R. Arquier, Une méthode de calcul des modes de vibrations nonlinéaires de structures, PhD Thesis, Université de la méditerranée,
Marseille, 2007.

[35] M.S. Plesset, The dynamics of cavitation bubbles, Journal of Applied Mechanics 16 (1949) 277-282.

[36] F. Pérignon, S. Bellizzi, B. Cochelin, Numerical and experimental analysis of nonlinear forced vibrations of imperfect plates,
Proceedings of the ISMA Conference, Louvain, 2002.

[37] M. Crisfield, Non-linear Finite Element Analysis of Solids and Structures, Vol. 1, Wiley, New York, 1991.

[38] M. Potier-Ferry, N. Damil, B. Braikat, J. Descamps, J.M. Cadou, H.L. Cao, A.E. Hussein, Traitement des fortes non-linéarités par la
méthode asymptotique numérique, Comptes rendus de I’ Académie des Sciences, Paris 324 (1997) 171-177 (Serie 1Ib).

[39] B. Troyanovsky, Frequency Domain Algorithms for Simulating Large Signal Distortion in Semiconductor Devices, PhD Thesis,
Stanford University, 1997.



	A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions
	Introduction
	Presentation of the method for obtaining periodic solutions of autonomous systems
	The HB principle
	A key point: the quadratic recast
	The HBM applied to a quadratic system
	The continuation procedure
	Framework
	The ANM continuation
	Comments

	Implementation in the MANLAB software program
	A brief presentation of MANLAB
	Implementation of the periodic solution continuation in MANLAB


	The case of a periodically forced system
	Numerical results on selected examples
	Discussion and conclusion
	Acknowledgements
	Constant term
	Linear term
	Quadratic term

	References




